Optimization of the Tool Life and the Cutting Speed for Maximum Productivity at Drilling of the Stainless Steel X20Cr13

Abstract:

The research regarding the cutting machinability have highlighted the insufficiency of the data for establishing the optimum cutting processing conditions and the optimum cutting regime. The purpose of this paper is the optimization of the tool life and the cutting speed at the drilling of the stainless steels in terms of the maximum productivity. A nonlinear programming mathematical model to maximize the productivity at the drilling of the stainless steel X20Cr13 is developed in this paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the proposed mathematical model. The use of this productivity model allows greater accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The obtained results can be used in production activity, in order to increase the productivity of the stainless steels machining. Finally the paper suggests new research directions for the specialists interested in this field.