Trend of social media news: A viewpoint of COVID-19 tweets using Natural Language Processing

Abstract:

The meteoric rise of social media news during the ongoing COVID-19 is worthy of advanced research. Freedom of speech in many parts of the world, especially the developed countries and liberty of socialization, calls for noteworthy information sharing during the panic pandemic. However, social media used, as a communication intervention during crises in the past is remarkable, the Tweets generated via Twitter during the ongoing COVID-19 is incomparable with the former records. This study intends to examine the trend of social media news and compares the Tweets on COVID-19 as a corpus from Twitter. By deploying Natural Language Processing (NLP) methods on tweets, we were able to extract and quantify the similarities between some tweets over time, which means that some people say the same thing about the pandemic while some Twitter users view it differently. The tools we used are Spacy, Networkx, WordCloud, and Re. This study contributes to the social media literature by understanding the similarity and divergence of COVID-19 tweets of the public and health agencies such as the World Health Organization (WHO). The study also sheds more light on the COVID-19 sparse and densely text network and their implications for the policymakers. The study limitation and future studies were proposed.